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We describe the observable content of some of themost widely used
models of decision under uncertainty: models of translation invariant
preferences. In particular, we characterize the models of variational,
maxmin, constant absolute risk aversion, and constant relative risk
aversion utilities. In each case we present a revealed preference
axiom that is satisfied by a dataset if and only if the dataset is
consistent with the corresponding utility representation. We test our
axioms using data from an experiment on financial decisions.
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This paper is an investigation of the testable implications of
models of decision under uncertainty. We carry out this in-

vestigation in financial markets, one of the most common envi-
ronments in which human subjects face uncertainty.
Risk is uncertainty that can be objectively quantified probabi-

listically. A gambler in a casino faces risk: He may calculate the
probability that a roulette wheel stops on the number 7, or that a
die lands on 5. Most scientists, in contrast, face the more general
concept of uncertainty and study subjects who face uncertainty.
Scientists conduct or analyze experiments with outcomes that they
do not know, and for which no probabilities are objectively given.
Of course, the scientist or the subject may have a subjective

judgment of how likely different events are. Such judgments may
even have a probabilistic expression, but the uncertainty is not
resolved by means of a mechanical device for which probabilities
can be objectively calculated. Moreover, this fact may cause
subjects to display uncertainty aversion, a tendency to prefer risky
bets over uncertain ones. Uncertainty aversion was famously
documented by David Ellsberg (1), and the theories we treat in
our paper are in part designed to describe uncertainty aversion.
In uncertain situations, human subjects choose among uncertain

prospects. These are functions specifying an “outcome” for each
element of a given set of “states of the world.” Think of an in-
surance contract that pays off a given sum only if some accident
occurs. The set of states of the world is the binary set that codifies
whether an accident has occurred, and the outcome is the payoff.
In financial markets, the uncertain prospects correspond to finan-
cial assets, whereas the state of the worlds describe the relevant
economic fundamentals, and the outcomes monetary payoffs.*
A long tradition in decision theory develops models of how hu-

mans make decisions under uncertainty. A crucial idea in this devel-
opment is that of translation invariance. Translation invariance means
that if two uncertain prospects are transformed in the same way, by
adding to each prospect a given, fixed, monetary payment, then the
subject’s preference between the two prospects should be preserved.
For example, if the subject prefers insurance contract A over B, then
the preference should be maintained after the price of each insurance
contract has been raised by the same amount. A related idea is
homotheticity, where scaling the payoffs of the two contracts should
not affect how they are ranked. Translation invariance and homo-
theticity give rise to different theories of decision under uncertainty.
Theories demand to be tested, and our contribution lies in

working out the testable implications of theories of homothetic and
translation invariant behavior under uncertainty. We focus on fi-
nancial markets because these are some of the most familiar and
common uncertain environments for human subjects. If one is to
test a theory, it makes sense to study it in the subjects’most familiar

environments. It is plausible that agents do not know how to behave
in an artificial environment, but that they have learned how to deal
with uncertainty in familiar environments. For human subjects, few
uncertain environments are as familiar as financial markets. Most
existing experimental environments are artificial: They involve hu-
man subjects choosing among bets on extractions of colored balls
from urns of uncertain composition [Ellsberg’s thought experiments
are the best known of these (1)]. Our contribution is instead to
focus on designs based on financial markets.
Our main results characterize the financial datasets that are

consistent with the theories. Given is a finite collection of data on
purchases of financial assets. The question is, When are such data
consistent with a theory of choice under uncertainty? We provide
answers for some of the most commonly encountered theories,
those based on translation invariance and homotheticity.
We show that our results are applicable to the analysis and

design of experiments by using a recent experiment by Hey and
Pace (2). Hey and Pace have subjects decide on purchases of fi-
nancial assets. We use the data they collect to test for consistency
with maxmin expected utility, a theory of decision under un-
certainty based on translation invariance and homotheticity. The
conclusion of our analysis is that Hey and Pace’s data reject the
maxmin theory. The finding is preliminary and meant mainly as
an illustration of our methods, but if confirmed it would mean
that some of the best-known theories of choice under uncertainty,
theories that are thought of as weak, and accommodating of di-
verse behavioral and psychological phenomena, do not in fact
stand up to empirical scrutiny on data from financial experiments.
The theories covered by our results include risk-neutral variational

preferences (3), risk-neutral maxmin preferences (4), and subjective
expected utility preferences with constant absolute risk aversion: so-
called CARA preferences. Analogously to the CARA case, we also
work out the testable implications of subjective expected utility pref-
erences with constant relative risk aversion: so-called CRRA prefer-
ences. The theories have been used for different purposes. Variational
and maxmin preferences are the most commonly used models of
uncertainty aversion (3–6). They are also used to capture model ro-
bustness (7). CARA and CRRA preferences are extremely common
in applied work in macroeconomics and finance, among other fields.
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The authors of refs. 8, 9, and 10 carried out exercises similar to
ours, also focusing on financial market experiments, but in a context of
risk, not uncertainty. The closest papers to ours are those given in refs.
11, 12, and 13. Echenique and Saito (11) studied the case of subjective
expected utility but did not address the more general theories studied
here, and that have been proposed to address the empirical short-
comings of subjective expected utility. Bayer et al. (12) and Polisson
and Quah (13) treat some of the same theories we do but give a
characterization in terms of the solution of a system of inequalities.
We give a revealed preference axiom (a characterization that refer-
ences only observable data) that has to be satisfied for the data to be
rationalizable. It can be written in the UNCAF (universal negation of
concatenations of atomic formulas) form, which is the kind of axiom
that characterizes the empirical content of a theory (14). A system of
(nonlinear) inequalities may not give an economic interpretation to
the characterization, and it may not be computationally feasible.†

Definitions
Let S be a finite set of states of the world. An act is a function
from S into R; RS is the set of acts. An act can be interpreted as a
state-contingent monetary payment. Define kxk1 =

P
sxs. ΔðSÞ

represents the set of probability distributions on S, that is, ΔðSÞ=
fπ ∈RS

+ :
P

sπs = 1g.
A preference relation on RS is a complete and transitive binary

relation ≽ ; we denote by ≻ the strict part of ≽ . A function
u :RS →R defines a preference relation ≽ by x≽ y if and only if
uðxÞ≥ uðyÞ. We say that u represents ≽ , or that it is a utility function
for ≽ . A preference relation ≽ on RS is locally nonsatiated if for
every x and every e> 0 there is y such that kx− yk< e and y≻ x.

Preferences, Utilities, and Data
A dataset D is a finite collection fðpk, xkÞgKk=1, where each pk ∈RS

++
is a vector of strictly positive (so-called Arrow–Debreu) prices, and
each xk ∈RS is an act. The interpretation of a dataset is that
each pair ðpk, xkÞ consists of an act xk chosen from the budget
fx∈RS : pk · x≤ pk · xkg of affordable acts. Such datasets are
common in financial markets experiments (2, 12, 15).
A dataset fðpk, xkÞgKk=1 is rationalizable by a preference relation

≽ if xk ≽ x whenever pk · xk ≥ pk · x. So, a dataset is rationalizable by
a preference relation when the choices in the dataset would have
been optimal for that preference relation. A dataset fðpk, xkÞgKk=1 is
rationalizable by a utility function u if it is rationalizable by the
preference relation represented by u. So, a dataset is rationalizable
by a utility function when the choices in the dataset would have
maximized that utility function in the relevant budget set.
A preference relation ≽ is translation invariant if for all x, y∈RS

and all c∈R, we have x≽ y if and only if x+ ðc, . . . , cÞ≽ y+
ðc, . . . , cÞ.
A preference relation ≽ is homothetic if for all x, y∈RS and

all α> 0, we have x≽ y if and only if αx≽ αy.
A preference relation ≽ is a risk-neutral variational prefer-

ence if there is a convex and lower semicontinuous function
c :ΔðSÞ→R ∪ f+∞g such that the function

inf
π∈ΔðSÞ

π · x+ cðπÞ

represents ≽ . If a dataset is rationalizable by a risk-neutral var-
iational preference relation, we will say that the dataset set is
risk-neutral variational-rationalizable.
A special case of variational preference is maxmin: A prefer-

ence relation is risk-neutral maxmin if there is a closed and
convex set Π⊆ΔðSÞ such that the utility function

inf
π∈Π

π · x

represents ≽ . If a dataset is rationalizable by a risk-neutral max-
min preference relation, we will say that the dataset set is risk-
neutral maxmin-rationalizable. More generally, a preference re-
lation is risk-averse maxmin if there is a closed and convex set
Π⊆ΔðSÞ, where for each π ∈Π and each s∈ S, πs > 0, and a con-
cave utility u :R→R such that the utility function

inf
π∈Π

X
s=1,2

πsuðxsÞ

represents ≽ . If a dataset is rationalizable by a maxmin preference
relation, we will say that the dataset set is maxmin-rationalizable.
A utility u :RS →R is CARA if there is α> 0 and π ∈ΔðSÞ for

which for all s∈ S, πs > 0, and

uðxÞ=
X
s∈S

πsð−expð−αxÞÞ.

Note that CARA is a special case of subjective expected utility.‡

A utility u :RS →R is CRRA if there is α∈ ð0,1Þ and π ∈ΔðSÞ
for which for all s∈ S, πs > 0, and

uðxÞ=
X
s∈S

πs

�
x1−α

1− α

�
.

If a dataset is rationalizable by a CARA (CRRA) utility, we will
say that the dataset set is CARA (CRRA) rationalizable.

Variational and Maxmin Preferences
We present the results on variational and maxmin rationalizability
as Theorems 1 and 2. These models satisfy the hypothesis that for
any x, y, x∼ y⇒ 1

2 x+
1
2 y≽ y. This hypothesis is known as convexity

of preference. Convexity is related to uncertainty aversion in the
sense of ref. 4. In fact, given the assumptions of monotonicity
found in that paper, together with the assumption that the pref-
erence is risk-neutral (i.e., lotteries are evaluated according to their
expected value), it is equivalent to uncertainty aversion. Uncertainty
aversion is the idea that an agent dislikes uncertainty and suffers
from his or her ignorance of the possible probability distribution
that governs outcomes.
One important conclusion that emerges from our analysis is that

convexity is not testable with market data. This therefore means that
under the maintained hypothesis of risk neutrality (and mono-
tonicity), uncertainty aversion cannot be detected with financial data.

Theorem 1. The following statements are equivalent:

i) Dataset D is rationalizable by a locally nonsatiated, trans-
lation invariant preference.

ii) Dataset D is rationalizable by a continuous, strictly increas-
ing, concave utility function satisfying the property uðx+
ðc, . . . , cÞÞ= uðxÞ+ c.

iii) Dataset D is risk-neutral variational-rationalizable.
iv) For every l= 1, . . . ,M, and every sequence fklg⊆ f1, . . . ,Kg,

XM
l=1

pkl

kpklk1
·
�
xkl+1 − xkl

�
≥ 0,

where addition is modulo M, as usual.
Note that the equivalence between ii and iii is due to ref. 3.

†The paper by Bayer et al. (12) is a case in point, where the solution to the system of
inequalities is implemented by a grid search. A conclusive test is not possible since they
results depend on the assumed granularity of the grid. ‡In fact, it is also a special case of a risk neutral variational preference, a fact exploited by ref. 16.

4004 | www.pnas.org/cgi/doi/10.1073/pnas.1517760113 Chambers et al.
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Remark: The fact that i implies ii and iii implies that if a dataset
is rationalizable by a translation invariant preference, the dataset
is also rationalizable by a risk-neutral variational preference
(which automatically satisfies convexity).

Remark: The preceding result can be generalized. Suppose we
were interested in the testable implications of preferences that are
β-translation invariant, for some β≥ 0, β≠ 0. That is, we want to
know whether for all x, y, we have x≽ y if and only if for all t,
x+ tβ≽ y+ tβ. Define the seminorm kxkβ1 =

P
ijβixij. Then it is an

easy exercise to verify that the testable implications of β-translation
invariance are given by Eq. 4, replacing k · k1 with k · kβ1.

Remark: The test in ref. 4 is related to cyclic monotonicity. This
is similar to the test given in ref. 17 for quasilinear preferences
(and to a result in ref. 18).
We now turn our attention to maxmin preferences.
We say that a function u :RS →R is linearly homogeneous if

for all x∈RS and all α> 0, we have uðαxÞ= αuðxÞ.
Theorem 2. The following statements are equivalent:

i) Dataset D is rationalizable by a locally nonsatiated, homo-
thetic and translation invariant preference.

ii) Dataset D is rationalizable by a continuous, strictly increas-
ing, linearly homogeneous and concave utility function sat-
isfying the property that uðx+ ðc, . . . , cÞÞ= uðxÞ+ c.

iii) Dataset D is risk-neutral maxmin-rationalizable.
iv) For every k and l,

pk

kpkk1
· xk ≤

pl

kplk1
· xk.

The equivalence between ii and iii is due to ref. 4.
It is interesting to note that, just as in Theorem 1, under the

maintained hypotheses of risk aversion and monotonicity, un-
certainty aversion has no content for behavior.

Remark: The rationalizing variational and maxmin preferences
can be taken to imply “full support” priors. In the proof of
Theorem 1, we shown that there is π ∈ΔðSÞ satisfying cðπÞ< +∞,
which implies for all s∈ S, πs > 0. In the proof of Theorem 2 we
show that for each π ∈Π and all s∈ S, πs > 0.

CARA and CRRA
The previous section considers translation invariance and homo-
theticity as general properties of preferences in choice under uncer-
tainty. Here we focus on the case of subjective expected utility. So, we
consider models in which the agent has a single prior over states, and
maximizes his or her expected utility. The prior is unknown and must
be inferred from his or her choices. Translation invariance gives rise
to CARA preferences, and homotheticity to CRRA.

Theorem 3. A dataset D is CARA rationalizable if and only if there
is α* > 0 such that Eq. 1 holds for all k, k′∈K and s, t∈ S and
CRRA rationalizable if and only if there is α* ∈ ð0,1Þ such that Eq. 2
holds for all k, k′∈K and s, t∈ S.

α*
�
xkt − xks + xk′s − xk′t

�
= log

 
pks
pkt

pk′t
pk′s

!
[1]

α* log

 
xkt
xks

xk′s
xk′t

!
= log

 
pks
pkt

pk′t
pk′s

!
[2]

The conditions in Theorem 3 may look like existential conditions:
essentially Afriat inequalities. Afriat inequalities are indeed the
source of Eqs. 1 and 2, as evidenced by the proof of Theorem 3,
but note that the statements are equivalent to nonexistential
statements: Eq. 1 says that when ðxkt − xks + xk′s − xk′t Þ≠ 0,

log
�

pks

pkt

pk′t

pk′s

�
�
xkt − xks + xk′s − xk′t

�
is independent of k, t, k′ and s, and that when ðxkt − xks + xk′s − xk′t Þ= 0

then log
�
pks
pkt

pk′t
pk′s

�
= 0. Similarly for Eq. 2.

It is worth pointing out that, except in the case when for all
observations, all prices are equal, and consumption of all goods
are equal, Eq. 1 can have only one solution. Hence, risk pref-
erences are uniquely identified.
The next corollary also shows that beliefs are identified. Recall that

a CARA utility is defined by a pair ða, πÞ, with a> 0 and π ∈ΔðSÞ.
Corollary. If ða, πÞ and ða′, π′Þ define CARA utilities that rationalize
D, then ða, πÞ= ða′, π′Þ. Furthermore, a= a′ coincide with the unique
solution to Eq. 1. Similarly for CRRA rationalizability and Eq. 2.

Risk-Averse Maxmin with Two States
Theorem 2 is about risk-neutral maxmin. Here we turn to maxmin
with risk aversion. In this section, we assume that there are two states
(i.e., S= f1,2g). A preference relation is maxmin if there is a closed
and convex set Π⊆ΔðSÞ, where for each π ∈Π and each s∈ S,
πs > 0, and a concave utility u :R→R such that the utility function

inf
π∈Π

X
s=1,2

πsuðxsÞ

represents ≽ . If a dataset is rationalizable by a maxmin pref-
erence relation, we will say that the dataset set is maxmin-
rationalizable.
Let K0 be the set of all k such that xk1 = xk2. Let K1 be the set of

all k such that xk1 < xk2, and K2 be the set of all k such that xk1 > xk2.
Note that K =K0 ∪K1 ∪K2.
Say that a sequence of pairs ðxkisi , xki′si′ Þ

n

i=1
is balanced if each k

appears as ki (on the left of the pair) the same number of times it
appears as k′i (on the right).
Given a sequence of pairs ðxkisi , xki′si′ Þ

n

i=1
, consider the following no-

tation: Let Il,s = fi : ki ∈Kl   and  si = sg, Il,s′= fi : ki′∈Kl   and  si′= sg, for
l= 0,1,2 and s= 1,2.

Axiom: Strong Axiom of Revealed Maxmin Expected Utility. For any
balanced sequence of pairs ðxkisi , xki′si′ Þ

n

i=1
in which

i) xkisi > xki′si′ for all i;
ii) #I0,1 +#I1,1 −#I1,1′ =#I0,1′ +#I2,1′ −#I2,1 ≤ 0

The product of price ratios satisfies

Yn
i=1

pkisi
pki′si′

≤ 1. [3]

Theorem 4. A dataset is maxmin rationalizable if and only if it satisfies
strong axiom of revealed maxmin expected utility (SARMEU).
Echenique and Saito (11) show that a stronger axiom, strong

axiom of revealed subjective expected utility (SARSEU), char-
acterizes rationalizability by subjective expected utility. Instead
of condition ii of SARMEU, SARSEU requires

#I0,1 +#I1,1 +#I2,1 =#I0,1′ +#I1,1′ +#I2,1′ . [4]

Theorem 4 is useful because it makes explicit what one would
need to see in an experiment (with two states, a common setup in
laboratory experiments) in order for choices to be consistent with
maxmin utility, but inconsistent with subjective expected utility. For

Chambers et al. PNAS | April 12, 2016 | vol. 113 | no. 15 | 4005
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a dataset to be maxmin rationalizable, but inconsistent with subjective
expected utility, it needs to contain a sequence in the conditions of
SARSEU in which #I0,1 +#I1,1 +#I2,1 =#I0,1′ +#I1,1′ +#I2,1′ , but
where #I0,1 +#I1,1 −#I′1,1 > 0.
As we have emphasized, the result in Theorem 4 is for two

states. There are two simplifications afforded by the assumption
of two states, and the two are crucial in obtaining the theorem.
The first is that with two states there are only two extreme priors
to any set of priors. With the assumption that u is monotonic,
one can know which of the two extremes is relevant to evaluate
any given act.§ The second simplification is a bit harder to see,
but it comes from the fact that one can normalize the probability
of one state to be one and only keep track of the probability of
the other state. Then the property of being an extreme prior
carries over to the probability of the state that is left “free.”{

Testing Maxmin
Hey and Pace (2) studied models of decision making under un-
certainty using data from a laboratory experiment; 129 subjects
are asked to allocate 50 experimental tokens between two states,
states s or s′. Tokens allocated to each state have a value of as
and as′. If a subject decides to allocate cs tokens to state s, then he
obtains a payment of cs · as when state s realizes; and ð50− csÞ · as′
when state s′ realizes.
In each decision problem, each subject’s decision is charac-

terized by a triple ðas, as′, csÞ, where cs is the number of tokens
she decides to allocate to state s. To map such decision to our
notion of data, set prices to be ps = as′=as and ps′ = 1 (a normali-
zation), and I = 50 · as′. Then, we define consumptions (monetary
amounts) as xs = cs · as and xs′ = ð50− csÞ · as′.
In the experiment, there are three underling states: “color” 1, 2,

and 3. However, only two states are relevant in each decision. So, we
can test SARMEU. Hey and Pace (2) used a Bingo Blower to decide
a realization of a state. The Bingo Blower is a rectangular-shaped,
glass-sided object in which many balls, whose color is either 1, 2, or 3,
are in continuous motion, being moved by a wind from a fan in the
base. A ball is drawn is from the Bingo Blower and the color of the
ball determines the state.# In total, each subject thus completes 76
decision problems. There are two types of decision problems. Type 1
problems asked subjects to allocate tokens between two of the three
colors, and type 2 problems asked them to make allocations between
one of the three colors and the other two. There were 41 type 1
problems and 35 type 2 problems. For example, in a type 1 problem,
state s= fcolor  1g; state s′= fcolor  2g. In a type 2 problem, state
s= fcolor  1g; state s′= fcolor  2, color  3g.
One of the conclusions made by Hey and Pace (2) is that

according to the Bayesian information criterion the loss in pre-
dictive power in using SEU instead of generalizations of SEU is
relatively small in magnitude. We test SARMEU for each indi-
vidual subject and for each type of decision problem. The tests
are based on linearized Afriat inequalities.
Table 1 summarizes the results. Across six types of decision

problems, we find that about 3–8% of the 129 subjects are MEU-
rational. Our result shows that MEU does not explain the subjects’
choices. This implies that SEU, a special case of MEU, does not
explain the subjects’ choices either. One conclusion of our results is
that decision theorists’ efforts to account for experimental behavior
do not seem to go very far in explaining the data of Hey and Pace (2).

Proofs
We provide the proofs of Theorems 1, 2, and 3. We omit
the proof of Theorem 4 (20), which is similar to the proofs
in ref. 11.

Proof of Theorem 1: That iii ⇒ i is obvious. We shall first prove
that i ⇒ iv.
Suppose, toward a contradiction, D is a dataset satisfying i but

not iv. Then, we have a cycle
PM

l=1
pkl

kpklk1

· ðxkl+ 1 − xklÞ< 0. Let us

without loss assume the sequence is x1, . . . , xM so as to avoid

cumbersome notation. Let Z=
PM

l=1
pl

kplk1 · ðx
l+1 − xlÞ< 0.

Define a new sequence ðy1, . . . , yMÞ inductively. Let y1 = x1,
and let yk = xk + ðck, . . . , ckÞ, where ck is chosen so that
pk

kpkk1 · ðy
k+1 − ykÞ= Z

M. Specifically, c
1 = 0 and

ck+1 = ck +
Z
M

−
pk

kpkk1
·
�
xk+1− xk

�
for k= 1, . . . ,M − 1. Let qk = pk

kpkk1 and consider the dataset
ðqk, ykÞ, k= 1, . . . ,M.
The original dataset is rationalizable by some locally non-

satiated and translation invariant preference ≽ . It is easy to see
that the same preference rationalizes the dataset ðqk, ykÞ. Indeed,
if qk · yk ≥ qk · y, then pk · xk ≥ pk · ðy− ðck, . . . , ckÞÞ, by definition of
yk and qk. So xk ≽ ðy− ðck, . . . , ckÞÞ, and thus yk ≽ y by translation
invariance of ≽ .
Observe that

XM−1

k=1

qk ·
�
yk+1 − yk

�
+ qM ·

�
y1 − yM

�

=
XM
k=1

pk

kpkk1
·
�
xk+1− xk

�
+
XM
k=1

pk

kpkk1
·
��
ck+1, . . . , ck+1

�
−
�
ck, . . . , ck

��

=
XM
k=1

pk

kpkk1
·
�
xk+1− xk

�
+
XM
k=1

�P
s∈Sp

k
s

��
ck+1− ck

�
kpkk1

=
XM
k=1

pk

kpkk1
·
�
xk+1− xk

� 
∵
��pk��1 = X

s∈S
pks

!

=Z ð∵Definition  of   ZÞ,

and that qk · ðyk+1 − ykÞ=Z=M for k= 1, . . . ,M − 1. Therefore,
qM · ðy1 − yMÞ=Z=M. In particular, qk · ðyk+1 − ykÞ=Z=M < 0 for
k= 1, . . . ,M (mod M). Thus, yk ≻ yk+1 as ðqk, ykÞ is rationalizable
by ≽ and ≽ is locally nonsatiated. This contradicts the transi-
tivity of ≽ .
Now we show that iv ⇒ i. Let x∈RS. Let Σx be the set of all

subsequences fklgMl=1 ⊂ f1, . . . ,Kg for which k1 = 1 and define
xkM+1 = x. By iv, if fklgMl=1 ∈Σx has a cycle (meaning that kl = kl′ for
l, l′∈ f1, . . . ,Mg with l≠ l′), then there is a shorter sequence
fkjgM′

j=1 ∈Σx with

Table 1. Pass rates of SARMEU

Type Allocation K Pass rate

1a Color 2 and 3 14 0.054
1b Color 3 and 1 15 0.031
1c Color 1 and 2 12 0.070
2a Color 1 and (2 or 3) 9 0.078
2b Color 2 and (1 or 3) 14 0.039
2c Color 3 and (1 or 2) 12 0.054

§This would also be true in the model of ref. 19, whose uncertainty averse counterpart is
equivalent to MEU in the case of two states.

{This can be seen in the proof of Lemma 1 when we go from π≥ π to μ1 ≥ μ
1
.

#The idea behind the use of a Bingo Blower was that subjects could not have sufficient
information to calculate objective probabilities.
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XM′

j=1

pkj

kpkjk1
·
�
xkj+1− xkj

�
≤
XM
l=1

pkl

kpklk1
·
�
xkl+1− xkl

�
.

Therefore, uðxÞ= inf
	PM

l=1
pkl

kpklk1

· ðxkl+ 1 − xklÞ : fklgMl=1 ∈Σx



is well

defined, because the infimum can be taken over a finite set.
That u :RS →R defined in this fashion is concave, strictly in-

creasing and continuous is immediate. To see that it rationalizes
the data, suppose that pk · xl ≤ pk · xk. Then pk

kpkk1 · x
l ≤ pk

kpkk1 · x
k. It is

clear then by definition that uðxlÞ≤ uðxkÞ+ pk

kpkk1 · ðx
l − xkÞ≤ uðxkÞ.

Finally, to show that uðx+ ðc, . . . , cÞÞ= uðxÞ+ c, note that for any
pk, we have pk

kpkk1 · ðx+ ðc, . . . , cÞÞ= c+ pk

kpkk1 · x. The result then fol-
lows by construction.
We end the proof by showing that ii ⇒ iii. Let u :RS →R be as

in the statement of ii. Define the concave conjugate of u by

f ðπÞ= inf
�
π · x− uðxÞ : x∈RS�

= inf
�
π · x+ cπ · 1− uðxÞ− c : x∈RS, c∈R

�
= inf

�
π · x− cð1− π · 1Þ− uðxÞ : x∈RS, c∈R

�
,

where the second equality uses that uðx+ ðc, . . . , cÞÞ= uðxÞ+ c.
Now note that f ðπÞ=−∞ if ð1− π · 1Þ≠ 0. Note also that the
monotonicity of u implies that f ðπÞ=−∞ if there is s such that
πS < 0. One can also show that there is π ∈ΔðSÞ for which
f ðπÞ∈R.k Finally, observe that by strict monotonicity, if there
is s∈ S for which πs = 0, then f ðπÞ=−∞. Hence, we can consider
the domain of f to be a subset of ΔðSÞ. Moreover, f ðπÞ< +∞
implies for all s∈ S, πs > 0.
Now, since u is continuous, it is a standard application of

the separating hyperplane theorem to establish that uðxÞ=
infπ∈ΔðSÞπ · x− f ðπÞ. Because u rationalizes the dataset, the
dataset is variational rationalizable.

Proof of Theorem 2: It is obvious that iii ⇒ ii and that ii ⇒ i.
Hence, to show the theorem, it suffices to show that iv implies iii
and that i implies iv.
For a dataset D, let πk = pk

kpkk1. It is easy to see that iv ⇒ iii. Let
Π be the convex hull of fπk : k= 1, . . . ,Kg. Then, it is immediate
that uðxÞ=minπ∈Ππ · x rationalizes D. Moreover, for each π ∈Π
and all s∈ S, πs > 0 because πks > 0 for all s∈ S and k∈K.
We prove that i ⇒ iv. Suppose that D satisfies i but not iv. Then,

there are k and l for which πl · xk < πk · xk. Let ≽ be a preference
relation as stated in i. By homotheticity of ≽ , for any scalar θ> 0, ≽
rationalizes the data D′≡ fðxj, πjÞ : j= 1, . . . ,Kg∪ fðθxl, πlÞg. To
see this, observe that if πl · x≤ πl · θxl, then πl · θ−1x≤ πlxl, so that
xl ≽ θ−1 · x, and by homogeneity, θxl ≽ x. Now, for θ> 0 sufficiently
small, πl · xk < πk · xk implies that

xk·
�
πl − πk

�
+ θxl ·

�
πk − πl

�
< 0.

So either xk · ðπl − πkÞ< 0 or θxl · ðπk − πlÞ< 0. Then the dataset D′
violates iv in Theorem 1, contradicting the fact that it is rational-
ized by ≽ , which is assumed to be translation invariant.

Proof of Theorem 3: The idea in the proof is to solve the first-order
conditions for the unknown terms. Consider first the case of CARA.
Let π ∈ΔðSÞ and α> 0 rationalize D. Then, we know that xk maxi-
mizes

P
sπsð−expð−αxsÞÞ subject to pk · x≤ pk · xk. By considering

the Lagrangean and the first-order conditions, we may conclude that
for every s, t∈ S and every k∈ f1, . . . ,Kg, we have

πs exp
�
−αxks

�
pks

=
πt exp

�
−αxkt

�
pkt

.

Conclude that pks πt
pkt πs

= expð−αðxks − xkt ÞÞ. By taking logs, the system
becomes

logðπsÞ− logðπtÞ+ α
�
xkt − xks

�
= log

�
pks
�
− log

�
pkt
�
. [5]

In the case of CRRA, the existence of a rationalizing π and
parameter α imply a first-order condition of the form

logðπsÞ− logðπtÞ+ α log
�
xkt

xks
�
= log

�
pks
�
− log

�
pkt
�
. [6]

We can denote logðπsÞ by zs in Eqs. 5 and 6. Thus, we obtain that
D is rationalizable if and only if there exist zs ∈R and α> 0 such
that the following equation is solved for all s, t, k with s≠ t :

zs − zt + α
�
ykt − yks

�
= log

�
pks
�
− log

�
pkt
�
,

where ykt = xkt for CARA rationalizability, and ykt = log xkt for
CRRA rationalizability.
Now the necessity of the axioms is obvious. Let k≠ k′, then

α
�
ykt − yks

�
− log

�
pks

pkt
�
= zs − zt = α

�
yk′t − yk′s

�
− log

�
pk′s

pk′t
�

for any s and t. Thus

α
�
ykt − yks − yk′t + yk′s

�
= log

�
pks
pkt

pk′t
pk′s

�
.

So, i is satisfied for the case of CARA rationalizability, and ii is
satisfied for the case of CRRA rationalizability.
To prove sufficiency, let

dpðs, t, kÞ= log
�
pks

pkt
�

dxðs, t, kÞ= yks − ykt .

Let α* be such that for all k, k′, s, s′ and t,

α*
�
ykt − yks − yk′t + yk′s

�
= log

�
pks
pkt

pk′t
pk′s

�
.

Then in particular, for all k, k′, s, s′ and t,

dpðs, t, kÞ+ α*dxðs, t, kÞ+ dpðt, s, k′Þ+ α*dxðt, s, k′Þ= 0. [7]

Note also that

dpðs, t, kÞ+ dpðt, s′, kÞ+ dpðs′, s, kÞ
+ α*ðdxðs, t, kÞ+ dxðt, s′, kÞ+ dxðs′, s, kÞÞ. [8]

Fix s0 ∈ S and let zs0 ∈R be arbitrary. For any s∈ S, define zs by

zs = zs0 + α*dxðs0, s, kÞ+ dpðs, s0, kÞ,

for some k. In fact, by Eq. 7, this definition is independent of k
because dpðs, s0, kÞ+ α*dxðs, s0, kÞ= dpðs, s0, k′Þ+ α*dxðs, s0, k′Þ.
Given this definition, note that

zs − zt = α*ðdxðs0, s, kÞ− dxðs0, t, kÞÞ+ dpðs, s0, kÞ− dpðt, s0, kÞ
= α*ðdxðs0, s, kÞ− dxðs0, t, kÞÞ+ dpðs, s0, kÞ− dpðt, s0, kÞ
+ dpðs, t, kÞ+ dpðt, s0, kÞ+ dpðs0, s, kÞ+ α*ðdxðs, t, kÞ
+ dxðt, s0, kÞ+ dxðs0, s, kÞÞ= dpðs, t, kÞ+ α*dxðs, t, kÞ,

where the second equality uses Eq. 8.
Hence, with the constructed ðztÞt∈S we have

zs − zt + α*
�
ykt − yks

�
= log

�
pks

pkt
�
,

for all s, t, and k. The first-order conditions for rationalizability
are therefore satisfied.

kFor example, take π to support fz∈RS :uðzÞ≥0g at 0. We claim that fðπÞ≥ 0. Suppose by
means of contradiction that there is x ∈RS for which π · x <uðxÞ. Observe that π supports
fz∈RS :uðzÞ≥ π · xg at the act y, which returns π · x in each state. Observe that uðzÞ> π · x
implies π · z> π · x, by continuity of u and definition of the supporting hyperplane, that is,
fz∈RS :uðzÞ≥ π · xg⊆ fz∈RS : π · z≥ π · xg implies fz∈RS :uðzÞ> π · xg⊆ fz∈RS : π · z> π · xg
because the latter sets are the interiors of the former. Therefore, if uðxÞ> π · x, we conclude
π · x > π · x, a contradiction.
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